翔田千里一区二区_亚洲手机在线_久久久九九九九_在线精品国产欧美

供求商機
您現在的位置:首頁 > 供求商機 > 代理Ossila材料PFN CAS:673474-74-3

代理Ossila材料PFN CAS:673474-74-3

代理Ossila材料PFN CAS:673474-74-3
點擊放大
供應數量:
2924
發布日期:
2025/3/23
有效日期:
2025/9/23
原 產 地:
英國
已獲點擊:
2924
產品報價:
  [詳細資料]

只用于動物實驗研究等

PFN is a conjugated polyelectrolyte used as an electron-interface in OPV devices to improve extraction efficiencies. Currently producing power conversion efficiencies of up to 7.1% at Ossila with further increases expected from additional optimisation and up to 9.2% reported in the literature [1-3].

Soluble in polar solvents such as water and methanol in the presence of small amounts of acetic acid.

代理Ossila材料PFN CAS:673474-74-3

General Information

Full namePoly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)]
SynonymsPFN
Chemical formula(C52H70N2)n
CAS number673474-74-3

PFN chemical structureChemical structure of PFN. CAS no.: 673474-74-3. Chemical formula: (C52H70N2)n.

代理Ossila材料PFN CAS:673474-74-3

Usage details

Inverted OPV devices were made using the architecture shown below with PFN (batch M221) as an electron-interface and PTB7:PC70BM in a 1:1.5 blend ratio (batches M211 and M113 respectively). Ossila's S173 pixelated cathode substrate pack provided the device components.

Glass / ITO (100 nm) / PFN (5.5 to 10 nm) / PTB7:PC70BM (90 nm) / MoOx (15 nm) / Al (100 nm)

The substrate cleaning and PFN spin-coating were performed under ambient conditions with all other steps performed in an N2 glovebox until encapsulation had been completed (measurement performed under ambient conditions).

For generic details please see the fabrication guide and video. For specific details please see the condensed fabrication routine shown below. For information on our inexpensive Spin Coater for use with PFN please see our Spin Coater product page.

The active layer thickness, MoOx thickness, cathode metal (Ag or Al), PFN solution concentration, PFN drying/baking have not been fully optimised. As such, we expect further gains to be made with additional engineering work. However, for the devices made in this fabrication, a peak efficiency of 7.1% was achieved.

Efficiency for different PTB7 spin speeds - Standard architectureJsc for different PTB7 spin speeds - Standard architectureVoc for different PTB7 spin speeds - Standard architecture Fill factor for different PTB7 spin speeds - Standard architectureFigure 1: PCE, Jsc, Voc and FF for different spin speeds. Data shown is averaged with max and min overlaid with filled circles.

 

PTB7 JV Curve for inverted architecture
Figure 2: The JV curve for the best performing device.

 

Note that some burn-in was observed (i.e. a small improvement in device performance after a few seconds under the solar simulator) and the variability of the devices is currently slightly higher than for other interlayers (average PCE of 6.7%). We expect the uniformity to improve with further improvements in PFN processing, in particular the optimisation of drying conditions to ensure that the acetic acid is fully removed prior to active layer deposition.

 

Fabrication Routine

The below fabrication routine was used to fabricate inverted solar cells with peak efficiency of 7.1%. Further gains are expected with further optimisation.

Substrates/Cleaning:

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex III (1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PFN solution:

  • Stock solution of acetic acid dissolved 1:9 in methanol to enable low concentration solutions to be made more easily.
  • Acetic acid solution further dissolved to produce 2 μl/ml solution.
  • PFN dissolved at 2 mg/ml in methanol with 2 μl/ml of acetic acid with stirbar at ambient temperature for 10 minutes
  • Filtered through 0.45 μm PVDF filter

PFN Test Films

  • PFN Test film initially spun at 500 rpm and gave 21-22 nm
  • Second test film spun at 1000 rpm and gave 13-16 nm
  • Thicknesses extrapolated for higher spin speeds
  • It was noted that at low spin speeds 500 rpm to 2400 rpm there were significant crystallites present in the films - especially on the ITO. Extra filtration showed that this was not due to the solution and therefore most have been due to the drying process

Active Layer Solution

  • Fresh stock solution of PTB7 made on at 10 mg/ml in CB and dissolved with stirbar for 1 hour (dissolves very easily)
  • Mixed 1:1.5 with dry Ossila 95/5% C70 PCBM to make overall concentration of 25 mg/ml and dissolved with stirbar for 1 hour more
  • 3% of diiodooctane (DIO) added to solution
  • Filtered using 0.45 μm PVDF syringe filter

Active Layer Test Films

  • Test film spun at 1000 rpm for 2 mins using unfiltered solution and thickness measure on Dektak. Note that films must be fully dry before performing Dektak measurements.
  • 1000 rpm gave approximay 90 nm thickness.

Active layers

  • Devices spun using 30 μl dynamic dispense (20 μl gave only moderate wetting/coverage)
  • Spun for 2 mins
  • Cathode wiped with CB
  • Vacuum dried in glovebox anti-chamber for 20 mins to remove residual DIO from films

Cathode Evaporation

  • 15 nm of MoOx evaporated at 0.2 ?/s from fresh pellets at pressure <1e-6 mbar="" li="">
  • 100 nm of Al evaporated at 1.5 ?/s at pressure <1e-6 mbar="" li="">

Annealing / Encapsulation

  • No annealing performed
  • Encapsulated as standard, using Ossila EE1 (E131) epoxy and glass coverslip (C181) (30 mins in UV box).

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate lamp output
  • Lamp current: 7.9 A
  • Solar output at start of testing: 0.995 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Electrochemically etched aperture mask was optically calibrated to 0.212 cm2

 

References

Please note that Ossila has no formal connection to any of the authors or institutions in these references.

    1. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Z. He et al., Nature Photonics, 6, 591–595 (2012)
    2. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells, Z. He et al., Advanced Materials, 23, 4636–4643 (2011)
    3. Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells, R. Xia et al., Advanced Energy Materials, (2013)

    To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

    想了解更詳細的產品信息,填寫下表直接與我們聯系:

    留言框

    • 產品:

    • 您的單位:

    • 您的姓名:

    • 聯系電話:

    • 常用郵箱:

    • 省份:

    • 詳細地址:

    • 補充說明:

    • 驗證碼:

      請輸入計算結果(填寫阿拉伯數字),如:三加四=7
    深圳市澤拓生物科技有限公司 專業提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
    深圳市澤拓生物科技有限公司版權所有   |   技術支持:化工儀器網
    聯系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
    在線客服
    翔田千里一区二区_亚洲手机在线_久久久九九九九_在线精品国产欧美
    中文在线不卡| 欧美日韩中文字幕在线视频| 国产伦精品一区二区三区四区免费| 性色av一区二区三区红粉影视| 欧美日韩精品二区| 日韩一级视频免费观看在线| 亚洲午夜精品网| 黄色精品一区| 欧美电影免费观看高清| 亚洲精品久久久久久一区二区| 最新日韩欧美| 欧美日韩日日骚| 麻豆免费精品视频| 亚洲欧洲精品一区二区| 国产精品少妇自拍| 久久精品亚洲一区二区| 亚洲黄色影院| 久久aⅴ乱码一区二区三区| 在线观看日韩av电影| 欧美成人综合网站| 亚洲国产精品成人一区二区| 欧美日韩一区二区在线播放| 久久免费精品视频| 亚洲欧美久久久久一区二区三区| 欧美黑人多人双交| 久久久精品久久久久| 亚洲一区二区三区精品视频| 亚洲激情视频在线| 一本久道久久久| 欧美成人综合一区| 久久在线视频在线| 亚洲一区二区视频| 日韩视频在线免费观看| 欧美成人资源网| 亚洲高清视频在线| 欧美粗暴jizz性欧美20| 免费欧美网站| 国产伦精品一区二区三区在线观看| 免费短视频成人日韩| 久久久久久久激情视频| 欧美在线视频导航| 久久久久国产精品麻豆ai换脸| 午夜精品久久久久久久蜜桃app| 一区二区三区三区在线| 亚洲精品资源美女情侣酒店| 日韩特黄影片| 亚洲亚洲精品在线观看| 老司机67194精品线观看| 麻豆乱码国产一区二区三区| 亚洲清纯自拍| 亚洲欧美资源在线| 亚洲综合国产激情另类一区| 欧美亚洲免费在线| 欧美96在线丨欧| 欧美大片在线观看一区二区| 久久久国产精品一区二区中文| 欧美激情亚洲一区| 一区二区三区久久| 久久久国产一区二区三区| 欧美激情一区二区三区成人| 国产日韩精品电影| 亚洲三级国产| 欧美成人一区在线| 国产精品99久久久久久www| 欧美在线黄色| 亚洲日产国产精品| 久久不见久久见免费视频1| 欧美精品福利在线| 在线观看成人av电影| 亚洲一区视频| 国产精品r级在线| 国产精品久久午夜| 一本一本久久a久久精品综合妖精| 欧美福利视频| 欧美亚洲成人网| 在线亚洲伦理| 日韩一级欧洲| 国产日韩欧美日韩大片| 亚洲线精品一区二区三区八戒| 亚洲国产精品久久久久婷婷老年| 亚洲欧美日韩精品久久奇米色影视 | 亚洲激情网站| 亚洲国产精品va在线看黑人| 久久视频一区二区| 亚洲国产天堂久久国产91| 噜噜噜91成人网| 免费成人毛片| 中国日韩欧美久久久久久久久| 国产精品视频区| 久久成人国产精品| 欧美一区成人| 亚洲国产精品久久久久秋霞不卡 | 久久久噜噜噜久久久| 一区二区亚洲精品| 亚洲精品资源美女情侣酒店| 欧美日韩国产不卡| 亚洲欧美日韩一区| 久久久久久高潮国产精品视| 久久在线91| 一区二区三区国产精华| 99国产精品视频免费观看一公开| 欧美精品色一区二区三区| 亚洲综合国产精品| 久久久久九九九九| 亚洲校园激情| 免费成人你懂的| 亚洲影院免费观看| 欧美四级剧情无删版影片| 欧美一区免费| 欧美四级剧情无删版影片| 欧美电影免费| 欧美国产一区视频在线观看| 久久亚洲春色中文字幕久久久| 99国产精品久久| 欧美激情一区二区三区高清视频| 久久久久久网址| 黑人一区二区| 久久精品视频99| 女同性一区二区三区人了人一| 亚洲一级在线| 欧美一区二区黄色| 国产精品香蕉在线观看| 亚洲欧美成人| 亚洲毛片在线| 国产酒店精品激情| 欧美激情成人在线| 国产一区二区三区视频在线观看| 韩国女主播一区| 99视频有精品| 久久久久欧美| 一本一本久久| 国产精品成人午夜| 午夜精品成人在线| 欧美成人伊人久久综合网| 一区二区三区欧美| 国产一区美女| 欧美大片网址| 久久中文在线| 欧美一区二区免费视频| 久久综合九色99| 欧美精品一区二区三区一线天视频| 亚洲另类自拍| 午夜视频在线观看一区二区三区 | 欧美wwwwww| 亚洲综合欧美| 99视频精品在线| 久久久一本精品99久久精品66| 欧美一级电影久久| 久久久久久亚洲精品杨幂换脸| 中文有码久久| 亚洲国产日韩一区| 黄网动漫久久久| 激情欧美一区| 国产亚洲精品久久久久动| 欧美日韩另类丝袜其他| 欧美一区二区视频在线观看2020| 9l国产精品久久久久麻豆| 亚洲国产小视频| 欧美成人亚洲成人日韩成人| 久久久久久尹人网香蕉| 久久天天躁夜夜躁狠狠躁2022| 国产精品久久久久三级| 欧美人与禽猛交乱配| 亚洲精品久久| 伊大人香蕉综合8在线视| 狠狠88综合久久久久综合网| 国产日韩专区在线| 国产午夜亚洲精品羞羞网站| 精品1区2区3区4区| 亚洲午夜激情在线| 先锋影音久久久| 免费观看日韩av| 国产精品成人播放| 国产亚洲综合在线| 亚洲高清在线| 亚洲欧美激情一区二区| 欧美在线视频免费观看| 嫩草影视亚洲| 中文久久精品| 免费在线一区二区| 国产精品自拍在线| 亚洲毛片av在线| 美女91精品| 亚洲在线中文字幕| 欧美激情精品久久久| 欧美在线观看你懂的| 欧美日韩精品在线播放| 激情久久久久| 久久久av毛片精品| 亚洲欧美日韩精品综合在线观看| 久久婷婷麻豆| 国产一区二区精品久久99| 亚洲午夜在线观看| 销魂美女一区二区三区视频在线| 久久婷婷国产综合精品青草| 亚洲国产成人精品久久久国产成人一区| 欧美不卡一卡二卡免费版| 亚洲欧美影音先锋| 国产精品永久在线| 亚洲欧美制服中文字幕|